Revised Booster Study Plan Based on DOE Review Committee's Recommendations

July 24, 2003 (For discussion)

1. Dogleg:

- The L3 dogleg will be repositioned during the shutdown. Its effect is to be expected to reduce by 80%. (Lackey)
- The L13 dogleg will also be repositioned when the new septum is made. (Lackey, Harding)
- Other machines (KEK Booster, BNL AGS Booster, CERN PS Booster) are studying this problem.

2. Chromaticity modeling:

- Recalibrate SEXTL and find +5% difference from the original value. (Glass)
- Recalibrate SEXTS under way (Glass, Lackey)
- Sextupole eddy current effect negligible (Ostiguy)
- Main magnet field dc measurement complete (DiMarco, Schlabach)
- Main magnet field ac measurement under way (DiMarco, Schlabach)
- Re-measure ac chromaticity (Tomlin, Chou, Dooling)
- Re-fit body sextupoles (Drozhdin)
- Chromaticity spreadsheet (Ostiguy)

3. Power supply experiments at the E4R:

- 12 Hz operation successfully tested but rejected (Wolff, Lentz, Vogel)
- Dual-harmonic operation:
 - ➤ Simulation and specs done (Wolff)

- ➤ 2nd harmonic choke design under way (Kashikhin, Mills)
- ≥ 2nd harmonic capacitors to be purchased (Wolff)
- ➤ Test to be planned (Wolff, Lentz)

4. Space charge study:

- Simulations:
 - ➤ 1-D ESME (Lucas, MacLachlan)
 - > 2-1/2-D ORBIT
 - Greatly improved version by adding in mxyzptlk/beamline C++ class libraries, MAD parser, python shell, etc. (Ostiguy, Michelotti)
 - New version undergoing extensive test (Chou, Lucas)
 - Modified MAD lattice file (Drozhdin)
 - ➤ 3-D Synergia (Spentzouris, Amundson)
 - In addition to emittance growth, can simulate tune footprint and halo generation
 - Up to 5M particles on a 65×65×65 grid
- Space charge reduction:
 - ➤ Painting expt. (Tomlin, Chou)
 - ➤ Inductive inserts expt. (Wildman, Chou, Dooling)
 - ➤ IPM upgrade (Zagel)
 - Quadrupole pickup (Jansson?)

5. Lattice model improvement and measurement:

- Trim quads (Huang, Drozhdin)
- Steering dipoles (Huang, Drozhdin)
- Alignment errors (Ohnuma)
- Aperture limit (Prebys, Lackey)
- Beta-function measurement (Huang)

6. Transition crossing:

- Previous studies (MacLachlan, Lucas, Ankenbrandt)
- Gamma-t jump lattice modeling (Chou)
- New 1-D simulations:
 - > ESME vs. 1-D ORBIT (Lucas, Ostiguy)
 - ➤ With and w/o gamma-t jump (Lucas)
- Hardware test and beam experiment (Pellico)

7. Impedance and instabilities:

- Magnet impedance measurement (Crisp)
- Space charge impedance in two parallel plates (Lucas, Ng, Chou)
- RF cavity HOM modes (Wildman)
- Slow head-tail instability
 - ➤ Observation (Tomlin)
 - ➤ Analysis (Ng)
- Coupled bunch instability
 - ➤ Observation (Tomlin, Pellico, Koba)
 - ➤ Analysis (Ng)
 - ➤ Longitudinal damper (Wildman)
 - ➤ RF frequency modulation for Landau damping (Griffin, Zotter, Reid)